Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542362

RESUMO

Indole alkaloids are the main bioactive molecules of the Gelsemium genus plants. Diverse reports have shown the beneficial actions of Gelsemium alkaloids on the pathological states of the central nervous system (CNS). Nevertheless, Gelsemium alkaloids are toxic for mammals. To date, the molecular targets underlying the biological actions of Gelsemium alkaloids at the CNS remain poorly defined. Functional studies have determined that gelsemine is a modulator of glycine receptors (GlyRs) and GABAA receptors (GABAARs), which are ligand-gated ion channels of the CNS. The molecular and physicochemical determinants involved in the interactions between Gelsemium alkaloids and these channels are still undefined. We used electrophysiological recordings and bioinformatic approaches to determine the pharmacological profile and the molecular interactions between koumine, gelsemine, gelsevirine, and humantenmine and these ion channels. GlyRs composed of α1 subunits were inhibited by koumine and gelsevirine (IC50 of 31.5 ± 1.7 and 40.6 ± 8.2 µM, respectively), while humantenmine did not display any detectable activity. The examination of GlyRs composed of α2 and α3 subunits showed similar results. Likewise, GABAARs were inhibited by koumine and were insensitive to humantenmine. Further assays with chimeric and mutated GlyRs showed that the extracellular domain and residues within the orthosteric site were critical for the alkaloid effects, while the pharmacophore modeling revealed the physicochemical features of the alkaloids for the functional modulation. Our study provides novel information about the molecular determinants and functional actions of four major Gelsemium indole alkaloids on inhibitory receptors, expanding our knowledge regarding the interaction of these types of compounds with protein targets of the CNS.


Assuntos
Alcaloides , Gelsemium , Animais , Gelsemium/química , Alcaloides/química , Extratos Vegetais/química , Alcaloides Indólicos/química , Ácido gama-Aminobutírico , Mamíferos/metabolismo
2.
Foods ; 12(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959086

RESUMO

Garlic has been used for decades as an important food and additionally for its beneficial properties in terms of nutrition and ancestral therapeutics. In this work, we compare the properties of fresh (WG) and aged (BG) extract obtained from elephant garlic, harvested on Chiloe Island, Chile. BG was prepared from WG with a 20-day aging process under controlled temperature and humidity conditions. We observed that in BG, compounds such as diallyl disulfide decrease, and compounds of interest such as 5-hydroxymethylfurfural (69%), diallyl sulfide (17%), 3H-1,2-Dithiole (22%) and 4-Methyl-1,2,3-trithiolane (16%) were shown to be increased. Using 2,2-diphenyl-1-picrylhydrazyl (DPPH, BG: 51 ± 5.7%, WG: 12 ± 2.6%) and 2,20-azino-bis-(3-ethylbenzothiazoline-6 sulfonate) diammonium salt (ABTS, BG: 69.4 ± 2.3%, WG: 21 ± 3.9%) assays, we observed that BG possesses significantly higher antioxidant activity than WG and increased cell viability in hippocampal slices (41 ± 9%). The effects of WG and BG were shown to improve the neuronal function through an increased in intracellular calcium transients (189 ± 4%). In parallel, BG induced an increase in synaptic vesicle protein 2 (SV-2; 75 ± 12%) and brain-derived neurotrophic factor (BDNF; 32 ± 12%) levels. Thus, our study provides the initial scientific bases to foster the use of BG from Chiloe Island as a functional food containing a mixture of bioactive compounds that may contribute to brain health and well-being.

3.
Biomed Pharmacother ; 162: 114596, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989728

RESUMO

Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by cognitive impairment that increasingly affects the elderly. AD's main features have been related to cellular and molecular events, including the aberrant aggregation of the amyloid beta peptide (Aß), Ca2+ dyshomeostasis, and increased mitochondria-associated membranes (MAMs). Transglutaminase type 2 (TG2) is a ubiquitous enzyme whose primary role is the Ca2+-dependent proteins transamidation, including the Aß peptide. TG2 activity has been closely related to cellular damage and death. We detected increased TG2 levels in neuronal cells treated with Aß oligomers (AßOs) and hippocampal slices from J20 mice using cellular and molecular approaches. In this work, we characterized the capacity of TG2 to interact and promote Aß toxic aggregates (AßTG2). AßTG2 induced an acute increase in intracellular Ca2+, miniature currents, and hiperexcitability, consistent with an increased mitochondrial Ca2+ overload, IP3R-VDAC tethering, and mitochondria-endoplasmic reticulum contacts (MERCs). AßTG2 also decreased neuronal viability and excitatory postsynaptic currents, reinforcing the idea of synaptic failure associated with MAMs dysregulation mediated by TG2. Z-DON treatment, TG2 inhibitor, reduced calcium overload, mitochondrial membrane potential loss, and synaptic failure, indicating an involvement of TG2 in a toxic cycle which increases Aß aggregation, Ca2+ overload, and MAMs upregulation. These data provide novel information regarding the role TG2 plays in synaptic function and contribute additional evidence to support the further development of TG2 inhibitors as a disease-modifying strategy for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase
4.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768481

RESUMO

Neurulation is a crucial process in the formation of the central nervous system (CNS), which begins with the folding and fusion of the neural plate, leading to the generation of the neural tube and subsequent development of the brain and spinal cord. Environmental and genetic factors that interfere with the neurulation process promote neural tube defects (NTDs). Connexins (Cxs) are transmembrane proteins that form gap junctions (GJs) and hemichannels (HCs) in vertebrates, allowing cell-cell (GJ) or paracrine (HCs) communication through the release of ATP, glutamate, and NAD+; regulating processes such as cell migration and synaptic transmission. Changes in the state of phosphorylation and/or the intracellular redox potential activate the opening of HCs in different cell types. Cxs such as Cx43 and Cx32 have been associated with proliferation and migration at different stages of CNS development. Here, using molecular and cellular biology techniques (permeability), we demonstrate the expression and functionality of HCs-Cxs, including Cx46 and Cx32, which are associated with the release of ATP during the neurulation process in Xenopus laevis. Furthermore, applications of FGF2 and/or changes in intracellular redox potentials (DTT), well known HCs-Cxs modulators, transiently regulated the ATP release in our model. Importantly, the blockade of HCs-Cxs by carbenoxolone (CBX) and enoxolone (ENX) reduced ATP release with a concomitant formation of NTDs. We propose two possible and highly conserved binding sites (N and E) in Cx46 that may mediate the pharmacological effect of CBX and ENX on the formation of NTDs. In summary, our results highlight the importance of ATP release mediated by HCs-Cxs during neurulation.


Assuntos
Conexinas , Defeitos do Tubo Neural , Animais , Conexinas/metabolismo , Neurulação , Junções Comunicantes/metabolismo , Tubo Neural/metabolismo , Defeitos do Tubo Neural/metabolismo , Trifosfato de Adenosina/metabolismo
5.
Front Pharmacol ; 13: 948412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313347

RESUMO

The main strategy for the treatment of epilepsy is the use of pharmacological agents known as antiseizure medication (ASM). These drugs control the seizure onset and improves the life expectancy and quality of life of patients. Several ASMs are contraindicated during pregnancy, due to a potential teratogen risk. For this reason, the pharmacological treatments of the pregnant Women with Epilepsy (WWE) need comprehensive analyses to reduce fetal risk during the first trimester of pregnancy. The mechanisms by which ASM are teratogens are still under study and scientists in the field, propose different hypotheses. One of them, which will be addressed in this review, corresponds to the potential alteration of ASM on ion channels and proteins involved in relevant signaling and cellular responses (i.e., migration, differentiation) during embryonic development. The actual information related to the action of ASM and its possible targets it is poorly understood. In this review, we will focus on describing the eventual presence of some ion channels and synaptic proteins of the neurotransmitter signaling pathways present during early neural development, which could potentially interacting as targets of ASM. This information leads to elucidate whether these drugs would have the ability to affect critical signaling during periods of neural development that in turn could explain the fetal malformations observed by the use of ASM during pregnancy.

6.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628201

RESUMO

Fatty acids (FAs) are essential components of the central nervous system (CNS), where they exert multiple roles in health and disease. Among the FAs, docosahexaenoic acid (DHA) has been widely recognized as a key molecule for neuronal function and cell signaling. Despite its relevance, the molecular pathways underlying the beneficial effects of DHA on the cells of the CNS are still unclear. Here, we summarize and discuss the molecular mechanisms underlying the actions of DHA in neural cells with a special focus on processes of survival, morphological development, and synaptic maturation. In addition, we examine the evidence supporting a potential therapeutic role of DHA against CNS tumor diseases and tumorigenesis. The current results suggest that DHA exerts its actions on neural cells mainly through the modulation of signaling cascades involving the activation of diverse types of receptors. In addition, we found evidence connecting brain DHA and ω-3 PUFA levels with CNS diseases, such as depression, autism spectrum disorders, obesity, and neurodegenerative diseases. In the context of cancer, the existing data have shown that DHA exerts positive actions as a coadjuvant in antitumoral therapy. Although many questions in the field remain only partially resolved, we hope that future research may soon define specific pathways and receptor systems involved in the beneficial effects of DHA in cells of the CNS, opening new avenues for innovative therapeutic strategies for CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central , Ácidos Graxos Ômega-3 , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Humanos
7.
Front Mol Neurosci ; 15: 848642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401105

RESUMO

Disruption of the inhibitory control provided by the glycinergic system is one of the major mechanisms underlying chronic pain. In line with this concept, recent studies have provided robust proof that pharmacological intervention of glycine receptors (GlyRs) restores the inhibitory function and exerts anti-nociceptive effects on preclinical models of chronic pain. A targeted regulation of the glycinergic system requires the identification of the GlyR subtypes involved in chronic pain states. Nevertheless, the roles of individual GlyR subunits in nociception and in chronic pain are yet not well defined. This review aims to provide a systematic outline on the contribution of GlyR subtypes in chronic pain mechanisms, with a particular focus on molecular pathways of spinal glycinergic dis-inhibition mediated by post-translational modifications at the receptor level. The current experimental evidence has shown that phosphorylation of synaptic α1ß and α3ß GlyRs are involved in processes of spinal glycinergic dis-inhibition triggered by chronic inflammatory pain. On the other hand, the participation of α2-containing GlyRs and of ß subunits in pain signaling have been less studied and remain undefined. Although many questions in the field are still unresolved, future progress in GlyR research may soon open new exciting avenues into understanding and controlling chronic pain.

8.
Front Mol Neurosci ; 15: 1083189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733271

RESUMO

The Gelsemium elegans plant preparations have shown beneficial activity against common diseases, including chronic pain and anxiety. Nevertheless, their clinical uses are limited by their toxicity. Gelsemine, one of the most abundant alkaloids in the Gelsemium plants, have replicated these therapeutic and toxic actions in experimental behavioral models. However, the molecular targets underlying these biological effects remain unclear. The behavioral activity profile of gelsemine suggests the involvement of GABAA receptors (GABAARs), which are the main biological targets of benzodiazepines (BDZs), a group of drugs with anxiolytic, hypnotic, and analgesic properties. Here, we aim to define the modulation of GABAARs by gelsemine, with a special focus on the subtypes involved in the BDZ actions. The gelsemine actions were determined by electrophysiological recordings of recombinant GABAARs expressed in HEK293 cells, and of native receptors in cortical neurons. Gelsemine inhibited the agonist-evoked currents of recombinant and native receptors. The functional inhibition was not associated with the BDZ binding site. We determined in addition that gelsemine diminished the frequency of GABAergic synaptic events, likely through a presynaptic modulation. Our findings establish gelsemine as a negative modulator of GABAARs and of GABAergic synaptic function. These pharmacological features discard direct anxiolytic or analgesic actions of gelsemine through GABAARs but support a role of GABAARs on the alkaloid induced toxicity. On the other hand, the presynaptic effects of the alkaloid provide an additional mechanism to explain their beneficial effects. Collectively, our results contribute novel information to improve understanding of gelsemine actions in the mammalian nervous system.

9.
Front Mol Neurosci ; 14: 763868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867189

RESUMO

Alpha1-containing glycine receptors (GlyRs) are major mediators of synaptic inhibition in the spinal cord and brain stem. Recent studies reported the presence of α2-containing GlyRs in other brain regions, such as nucleus accumbens and cerebral cortex. GlyR activation decreases neuronal excitability associated with sensorial information, motor control, and respiratory functions; all of which are significantly altered during ethanol intoxication. We evaluated the role of ß GlyR subunits and of two basic amino acid residues, K389 and R390, located in the large intracellular loop (IL) of the α2 GlyR subunit, which are important for binding and functional modulation by Gßγ, the dimer of the trimeric G protein conformation, using HEK-293 transfected cells combined with patch clamp electrophysiology. We demonstrate a new modulatory role of the ß subunit on ethanol sensitivity of α2 subunits. Specifically, we found a differential allosteric modulation in homomeric α2 GlyRs compared with the α2ß heteromeric conformation. Indeed, while α2 was insensitive, α2ß GlyRs were substantially potentiated by ethanol, GTP-γ-S, propofol, Zn2+ and trichloroethanol. Furthermore, a Gßγ scavenger (ct-GRK2) selectively attenuated the effects of ethanol on recombinant α2ß GlyRs. Mutations in an α2 GlyR co-expressed with the ß subunit (α2AAß) specifically blocked ethanol sensitivity, but not propofol potentiation. These results show a selective mechanism for low ethanol concentration effects on homomeric and heteromeric conformations of α2 GlyRs and provide a new mechanism for ethanol pharmacology, which is relevant to upper brain regions where α2 GlyRs are abundantly expressed.

10.
Front Mol Neurosci ; 14: 756607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744627

RESUMO

The glycine receptor (GlyR), a ligand-gated ion channel, is critical for inhibitory neurotransmission in brainstem, spinal cord, and in supraspinal regions. Recent data from several laboratories have shown that GlyRs are expressed in the brain reward circuitry and that α1 and α2 are the principal subunits expressed in the nucleus accumbens (nAc). In the present study, we studied the sensitivity to ethanol of homomeric and heteromeric α3 GlyR subunits in HEK293 cells and dissociated neurons from the nAc. Finally, we explored ethanol-related behaviors in a Glra3 knockout mouse (Glra3 -/-). Studies in HEK293 cells showed that while homomeric α3 GlyR subunits were insensitive to ethanol, heteromeric α3ß GlyR subunits showed higher sensitivity to ethanol. Additionally, using electrophysiological recordings in dissociated accumbal neurons, we found that the glycine current density increased in Glra3 -/- mice and the GlyRs were less affected by ethanol and picrotoxin. We also examined the effect of ethanol on sedation and drinking behavior in Glra3 -/- mice and found that the duration in the loss of righting reflex (LORR) was unchanged compared to wild-type (WT) mice. On the other hand, using the drinking in the dark (DID) paradigm, we found that Glra3 -/- mice have a larger ethanol consumption compared to WT mice, and that this was already high during the first days of exposure to ethanol. Our results support the conclusion that heteromeric α3ß, but not homomeric α3, GlyRs are potentiated by ethanol. Also, the increase in GlyR and GABA A R mediated current densities in accumbal neurons in the KO mice support the presence of compensatory changes to α3 knock out. The increase in ethanol drinking in the Glra3 -/- mice might be associated to the reduction in ß and compensatory changes in other subunits in the receptor arrangement.

11.
Biomolecules ; 11(6)2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204137

RESUMO

Diminished inhibitory control of spinal nociception is one of the major culprits of chronic pain states. Restoring proper synaptic inhibition is a well-established rational therapeutic approach explored by several pharmaceutical companies. A particular challenge arises from the need for site-specific intervention to avoid deleterious side effects such as sedation, addiction, or impaired motor control, which would arise from wide-range facilitation of inhibition. Specific targeting of glycinergic inhibition, which dominates in the spinal cord and parts of the hindbrain, may help reduce these side effects. Selective targeting of the α3 subtype of glycine receptors (GlyRs), which is highly enriched in the superficial layers of the spinal dorsal horn, a key site of nociceptive processing, may help to further narrow down pharmacological intervention on the nociceptive system and increase tolerability. This review provides an update on the physiological properties and functions of α3 subtype GlyRs and on the present state of related drug discovery programs.


Assuntos
Nociceptividade/fisiologia , Receptores de Glicina/agonistas , Receptores de Glicina/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Endocanabinoides/farmacologia , Humanos , Nociceptividade/efeitos dos fármacos , Propofol/farmacologia , Estrutura Secundária de Proteína , Receptores de Glicina/química , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Zonisamida/farmacologia
12.
Front Pharmacol ; 11: 1143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903667

RESUMO

Colchicine is a plant alkaloid that is widely used as a therapeutic agent. It is widely accepted that colchicine reduces the production of inflammatory mediators mainly by altering cytoskeleton dynamics due to its microtubule polymerization inhibitory activity. However, other lines of evidence have shown that colchicine exerts direct actions on the function of ion channels, which are independent of cytoskeleton alterations. Colchicine is able to modify the function of several pentameric ligand-gated ion channels, including glycine receptors (GlyRs). Previous electrophysiological studies have shown that colchicine act as an antagonist of GlyRs composed by the α 1 subunit. In addition, it was recently demonstrated that colchicine directly bind to the α 3 subunit of GlyRs. Interestingly, other studies have shown a main role of α 3GlyRs on chronic inflammatory pain. Nevertheless, the functional effects of colchicine on the α 3GlyR function are still unknown. Here, by using electrophysiological techniques and bioinformatics, we show that colchicine inhibited the function of the α 3GlyRs. Colchicine elicited concentration-dependent inhibitory effects on α 3GlyRs at micromolar range and decreased the apparent affinity for glycine. Single-channel recordings show that the colchicine inhibition is associated with a decrease in the open probability of the ion channel. Molecular docking assays suggest that colchicine preferentially bind to the orthosteric site in the closed state of the ion channel. Altogether, our results suggest that colchicine is a competitive antagonist of the α 3GlyRs.

13.
Front Pharmacol ; 11: 900, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636743

RESUMO

The neurulation process is regulated by a large amount of genetic and environmental factors that determine the establishment, folding, and fusion of the neural plate to form the neural tube, which develops into the main structure of the central nervous system. A recently described factor involved in this process is glutamate. Through NMDA ionotropic receptor, glutamate modifies intracellular Ca2+ dynamics allowing the oriented cell migration and proliferation, essentials processes in neurulation. Glutamate synthesis depends on the mitochondrial enzyme known as glutaminase 1 (GLS1) that is widely expressed in brain and kidney. The participation of GLS 1 in prenatal neurogenic processes and in the adult brain has been experimentally established, however, its participation in early stages of embryonic development has not been described. The present investigation describes for the first time the presence and functionality of GLS1 in Xenopus laevis embryos during neurulation. Although protein expression levels remains constant, the catalytic activity of GLS1 increases significantly (~66%) between early (stage 12) and middle to late (stages 14-19) neurulation process. Additionally, the use of 6-diazo-5-oxo-L-norleucine (L-DON, competitive inhibitor of glutamine-depend enzymes), reduced significantly the GLS1 specific activity during neurulation (~36%) and induce the occurrence of neural tube defects involving its possible participation in the neural tube closure in Xenopus laevis embryos.

14.
Front Pharmacol ; 11: 709, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523530

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment that increasingly afflicts the elderly population. Soluble oligomers (AßOs) has been implicated in AD pathogenesis: however, the molecular events underlying a role for Aß are not well understood. We studied the effects of AßOs on mitochondrial function and on key proteins that regulate mitochondrial dynamics and biogenesis in hippocampal neurons and PC-12 cells. We find that AßOs treatment caused a reduction in total Mfn1 after a 2 h exposure (42 ± 11%); while DRP1 increased at 1 and 2 h (205 ± 22% and 198 ± 27%, respectively), correlating to changes in mitochondrial morphology. We also observed that SIRT1 levels were reduced after acute and chronic AßOs treatment (68 ± 7% and 77 ± 6%, respectively); while PGC-1α levels were reduced with the same time treatments (68 ± 8% and 67 ± 7%, respectively). Interestingly, we found that chronic treatment with AßOs increased the levels of pSIRT1 (24 h: 157 ± 18%), and we observed changes in the PGC-1α and p-SIRT1 nucleus/cytosol ratio and SIRT1-PGC-1α interaction pattern after chronic exposure to AßOs. Our data suggest that AßOs induce important changes in the level and localization of mitochondrial proteins related with the loss of mitochondrial function that are mediated by a fast and sustained SIRT1/PGC-1α complex disruption promoting a "non-return point" to an irreversible synaptic failure and neuronal network disconnection.

15.
Sci Rep ; 10(1): 4804, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179786

RESUMO

Glycine receptors (GlyRs) are anion-permeable pentameric ligand-gated ion channels (pLGICs). The GlyR activation is critical for the control of key neurophysiological functions, such as motor coordination, respiratory control, muscle tone and pain processing. The relevance of the GlyR function is further highlighted by the presence of abnormal glycinergic inhibition in many pathophysiological states, such as hyperekplexia, epilepsy, autism and chronic pain. In this context, previous studies have shown that the functional inhibition of  GlyRs containing the α3 subunit is a pivotal mechanism of pain hypersensitivity. This pathway involves the activation of EP2 receptors and the subsequent PKA-dependent phosphorylation of α3GlyRs within the intracellular domain (ICD), which decrease the GlyR-associated currents and enhance neuronal excitability. Despite the importance of this mechanism of glycinergic dis-inhibition associated with dysfunctional α3GlyRs, our current understanding of the molecular events involved is limited. Here, we report that the activation of PKA signaling pathway decreases the unitary conductance of α3GlyRs. We show in addition that the substitution of the PKA-targeted serine with a negatively charged residue within the ICD of α3GlyRs and of chimeric receptors combining bacterial GLIC and α3GlyR was sufficient to generate receptors with reduced conductance. Thus, our findings reveal a potential biophysical mechanism of glycinergic dis-inhibition and suggest that post-translational modifications of the ICD, such as phosphorylation, may shape the conductance of other pLGICs.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Receptores de Glicina/metabolismo , Receptores de Glicina/fisiologia , Substituição de Aminoácidos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Espaço Intracelular/metabolismo , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Receptores de Glicina/química , Receptores de Prostaglandina E Subtipo EP2 , Transdução de Sinais
16.
Front Pharmacol ; 11: 167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218730

RESUMO

Chronic pain is a common detrimental condition that affects around 20% of the world population. The current drugs to treat chronic pain states, especially neuropathic pain, have a limited clinical efficiency and present significant adverse effects that complicates their regular use. Recent studies have proposed new therapeutic strategies focused on the pharmacological modulation of G-protein-coupled receptors, transporters, enzymes, and ion channels expressed on the nociceptive pathways. The present work intends to summarize recent advances on the pharmacological modulation of pentameric ligand-gated ion channels, which plays a key role in pain processing. Experimental data have shown that novel allosteric modulators targeting the excitatory nicotinic acetylcholine receptor, as well as the inhibitory GABAA and glycine receptors, reverse chronic pain-related behaviors in preclinical assays. Collectively, these evidences strongly suggest the pharmacological modulation of pentameric ligand-gated ion channels is a promising strategy towards the development of novel therapeutics to treat chronic pain states in humans.

18.
Front Pharmacol ; 10: 331, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024303

RESUMO

Glycine receptors (GlyRs) are chloride-permeable pentameric ligand-gated ion channels. The inhibitory activity of GlyRs is essential for many physiological processes, such as motor control and respiration. In addition, several pathological states, such as hyperekplexia, epilepsy, and chronic pain, are associated with abnormal glycinergic inhibition. Recent studies have pointed out that positive allosteric modulators targeting the GlyR α3 subunit (α3GlyR) displayed beneficial effects in chronic pain models. Interestingly, previous electrophysiological studies have shown that tropeines, which are a family of synthetic antagonists of the serotonin type 3 receptors (5-HT3Rs), potentiate the activity of GlyRs conformed by α1 subunits. However, despite its importance as a pharmacological target in chronic pain, it is currently unknown whether the α3GlyR function is modulated by tropeines. Using electrophysiological techniques and molecular docking simulations, here we show that tropeines are inhibitors of the α3GlyR function. Tropisetron, a prototypical tropeine, exerted concentration-dependent inhibitory effects on α3GlyRs at the low micromolar range. In addition, three other tropeines showed similar effects. Single-channel recordings show that tropisetron inhibition is associated with a decrease in the open probability of the ion channel. Molecular docking assays suggest that tropeines preferentially bind to an agonist-free, closed state of the ion channel. The tropeine binding occurs in a discrete pocket around the vicinity of the orthosteric site within the extracellular domain of α3GlyR. Thus, our results describe the pharmacological modulation of tropeines on α3GlyRs. These findings may contribute to the development of GlyR-selective tropeine derivatives for basic and/or clinical applications.

19.
ACS Chem Neurosci ; 10(5): 2551-2559, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30893555

RESUMO

Glycine receptors (GlyRs) are members of the pentameric ligand-gated ionic channel family (pLGICs) and mediate fast inhibitory neurotransmission in the brain stem and spinal cord. The function of GlyRs can be modulated by positive allosteric modulators (PAMs). So far, it is largely accepted that both the extracellular (ECD) and transmembrane (TMD) domains constitute the primary target for many of these PAMs. On the other hand, the contribution of the intracellular domain (ICD) to the PAM effects on GlyRs remains poorly understood. To gain insight about the role of the ICD in the pharmacology of GlyRs, we examined the contribution of each domain using a chimeric receptor. Two chimeras were generated, one consisting of the ECD of the prokaryotic homologue Gloeobacter violaceus ligand-gated ion channel (GLIC) fused to the TMD of the human α1GlyR lacking the ICD (Lily) and a second with the ICD (Lily-ICD). The sensitivity to PAMs of both chimeric receptors was studied using electrophysiological techniques. The Lily receptor showed a significant decrease in the sensitivity to four recognized PAMs. Remarkably, the incorporation of the ICD into the Lily background was sufficient to restore the wild-type α1GlyR sensitivity to these PAMs. Based on these data, we can suggest that the ICD is necessary to form a pLGIC having full sensitivity to positive allosteric modulators.


Assuntos
Regulação Alostérica/fisiologia , Receptores de Glicina/fisiologia , Regulação Alostérica/efeitos dos fármacos , Células Cultivadas , Depressores do Sistema Nervoso Central/farmacologia , Quimera , Cianobactérias , Etanol/farmacologia , Espaço Extracelular/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Membranas Intracelulares/fisiologia , Isoflurano/farmacologia , Canais Iônicos de Abertura Ativada por Ligante/fisiologia , Potenciais da Membrana/efeitos dos fármacos
20.
J Alzheimers Dis ; 67(1): 343-356, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30584148

RESUMO

Alzheimer's disease (AD) is a neurodegenerative pathology, which is characterized by progressive and irreversible cognitive impairment. Most of the neuronal perturbations described in AD can be associated with soluble amyloid- ß oligomers (SO-Aß). There is a large amount of evidence demonstrating the neuroprotective effect of Nicotine neurotransmission in AD, mainly through nicotinic acetylcholine receptor (nAChR) activation and antiapoptotic PI3K/Akt/Bcl-2 pathway signaling. Using HPLC and GC/MS, we isolated and characterized two alkaloids obtained from C. scoparius, Lupanine (Lup), and 17- oxo-sparteine (17- ox), and examined their neuroprotective properties in a cellular model of SO-Aß toxicity. Our results showed that Lup and 17- ox (both at 0.03µM) prevented SO-Aß-induced toxicity in PC12 cells (Lup: 64±7%; 17- ox: 57±6%). Similar results were seen in hippocampal neurons where these alkaloids prevented SO-Aß neurotoxicity (Lup: 57±2%; 17- ox: 52±3%) and increased the frequency of spontaneous calcium transients (Lup: 60±4%; 17- Ox: 40±3%), suggesting an enhancing effect on neural network activity and synaptic activity potentiation. All of the neuroprotective effects elicited by both alkaloids were completely blocked by α-bungarotoxin. Additionally, we observed that the presence of both Lup and 17- ox increased Akt phosphorylation levels (52±4% and 35±7%, respectively) in cells treated with SO-Aß (3 h). Taken together, our results suggest that the activation of nAChR by Lup and 17- ox induces neuroprotection in different cellular models, and appears to be an interesting target for the development of new pharmacological tools and strategies against AD.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/toxicidade , Cytisus/química , Fármacos Neuroprotetores/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Esparteína/análogos & derivados , Esparteína/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células HEK293 , Hipocampo/patologia , Humanos , Camundongos Endogâmicos C57BL , Rede Nervosa/efeitos dos fármacos , Neurônios/patologia , Proteína Oncogênica v-akt/metabolismo , Células PC12 , Ratos , Esparteína/química , Esparteína/isolamento & purificação , Sinapses/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...